e e hmbe W M RRaE WM A MM hene Mt e ANAR WA NG WARR AERA AN M A W el e AR e TRk e ST sere ceem tehd b e
it M A AR ARAR e e e dhmr e Wl MEN RRAR GAN sei A MM e eAd e M e e b e bebe e o Reln el e
- wew wer e bml M e M e N e e WE MR LG WM WA MR R MM M N M WETT A MO T e i R teew e wer
I R T e et I LT T
e A mae dmed Gmah et G MEAR KW AR Meue wer MBI bied MM WA W WREE R W ey MM MR mam ew Aras W Wwar WM e O e wenk
rur dm b MR A weEr mwm e dmae i e G M e M e W e et e Amed R GmAn ek Rae Rk G e el o e o e
S new Aeme e e e ablh ek WM LT em e e mear nemr redr e G RER AR MRS MR M N AL MR AR AR MRS Ml M e e
. ABEE smam M e bmn AWR MAAL MNE e Maee Meae e v de el SHA Ml WAME MR SRS MRS R R AR UBEE WM T e e
- e M newr hmre b W MR mee W e HRA el Wedh wh W W T T W e e e heam e e e e e e e e
e mw e ek e e s W Mer lmel e S SR e M GeMS I W BEAW ww Wers drem R R G mee G wb dme Grab el meir e
AR mpan v e e e whnl AR LEMR AR e SR mess RN Amar Em e Redh ek i AN TEAR MR MR A MR MmA WAS GG Wom aue mow
. mm o win dese e Emam e mem vwen el el me WA WM M SIS UL TLEL MR MR AR MR WN SRS SMe WeRG HAR GO e GeRe
e hmih M AR e M e e TR el Wk WG AR ek PUMS Smad MSm M MR YR WS e e o brie dbe e e e wm ek ewoe dbee
et e st whme s dmm smm MM MR R sw ewam e ekak reie mek Wi RRAR M WD MRAE M R MR S T RS R e UM e s e

e W i e e Wedk MR M M WO G meas W M R W TR e MRS N Emm SR N MRS AN S e B e TR s e e

FOR THE

e AR M G e m e MR e M W MOE MM Mean e meey W Wae e et b e W W e M w weie friw Awe e e
e e Mem rmre e s VAR WA e amam mem HHE R BAED MM WA M G W MRS W W AR W e M e T e e onn e
- e AW A M am AR e MR M Mme S G R AN Em R MM M MR GO W M R R M e T aa T G e
et dedh WAL Gpan mm s meaw M mem MM W WEAR A WA W AR W SR e e e e e W W R e Wi e e eeT e

e MR sEm W s MW TEam wede MW WRAR UMM AN SRR e e mes e e G B Mes GRUR IR IR R M AN MM e ey cua bi e

TEXAS INSTRUMENTS

W e s e e G dh WGAE WeE s mese e ek mme whrh e er Wb GBA R M St MR MK WSS e MR W W DT e e e

9974 DISK PERIPHERAL.

v W AP MU AR meim e M Erae e A SRR MR W MR AR MEW W e s MR R M TRYR el bmer tmar WoR SR Meme e eese

mtw Ghet mom e heem Hhr dheh WEGR M W s eme rhie W Mk Mhra WM MR SIS men men e TR MR A W TR M e e S e e

=
%)
4
-
<1
2
[l
L.
L d
O
L3
o)
o ;]
3
i
Pt
b
i)
z
oo |
L.

A . . AR M e e mw wear Meer M MR W L M e Rees cmm fwm ek AR TR AT R MR MR R WS WS e e e e meae

0
on
| =
ot
3
n
-
-
-
o
-,
-]
©
L}
[
[+
I
4
T
E
-
=]
G
=
ot
]
e
-

e W W A M e W Ee e ek AN SENE GBS MR weR e WM MR e abe A M e e weam s ew e e s mee e

and
of

all rights in and to inventions

disclosed

therson

the

techniques,

herein

to any

organization
consent

and
information or

ar employing
methods,
described
or
prior

in this document
herein

exclusive properdy of

Texas Instruments.
Texas 79414

Copyright 1980
Texas Instruments
University

All rights reserved.

person

drawings shall be made
N,
Lubbock,

which might be granted
other

set forth
disclosing
materials.,

or apparatus

are the

Mo disclosure of
without the

Texas Instruments.
Consumer Group
Mail Station 5890
2301

INCORPORATED

Mayrch 28, 1983

Version 3.0

Date:

TI-9%2/4 DISK PERIPHERAL TABLE of CONTENTS

TABLE of CONTENTS

Pavagraph ‘ Title

SECTION 1 INTRODUCTION

SECTION 2 APPLICABLE DOCUMENTS

SECTION 3 SUPPORTED FILE MANAGEMENT OPTICONS

SECTION 4 INTERFACE TO BASIC

OFEN Statament
File-name Specification
File-organization Option
Open—~mode Uption
Record~type Option
File-type Option
File—-life Option
Exampgles

CLOSE Statement

FRINT Statement

INPUT Statement

REGTORE Statement

DELETE Statement

OLD Command

SAVE Command

EQF Function

bhbirbbhhbbbbbbbh
SRR ORI AN VR SRl e el
RN E: 4 AR

SECTION 5 CATALOG FILE ACCESS FROM BASIC

Ti PROUPRIETARY Functional Bpecificatior

TI-99/4 DISK PERIPHERAL TABLE of CONTENTS

e SECTION &6 FILE PROTECTION
SECTION 7 FILES SUBPROGRAM

SECTION 8 I/0 ERROR CODEB

TI PROPRIETARY Functional Specification

TI-99/4 DISK PERIPHERAL A INTRODUCTION

SECTION 1
INTRODUCTION

The information contained in this document, is intended to
give a complete functional specification of the 99/4 Disk
Peripheral as seen #rom a BASIC user standpoint,

This specification will not describe the utility package
which is build into the disk controller:; mor will it describe the
GPL interface routines +for direct disk access. These special
topics are discussed in a separate document, +the GPL Interfare
Specification for the 99/4 Disk Peripheral.

TI PROPRIETARY i~1 Functional Specificatior

Ti-99/4 DISK PERIPHERAL _ APPLICABLE DOCUMENTS

SECTION 2

APPL ICABLE DOCUMENTS

File Management Specification for the TI-99/4 Home Computer
{Version 2.5, 25 February 1983)

Home Computer BASIC Language Specification
{Revision 4.1, 12 April 1979}

Home Computer Disk Peripheral Hardware Specification

Software Specification for the 99/4 Disk Peripheral
{(Version 2.0, Revised 28 March 1983)

GPL Interface Specification for the 99/4 Disk Peripheral
(Versiaon 2.0, Revised 2B March 1983)

Tl PROPRIETARY -1 Functional Specification

TI-39/4 DISK PERIPHERAL SUPPORTED FILE MANAGEMENT OPTIONS

SECTION 3
SUPPORTED FILE MANAGEMENT OPTIONS
The disk peripheral supports most of the options decribed in

the File Management Specification for the TI~99/4 Home Computer.
The supported aptions include:

Sequential and relative record (random accesg) fileg
Fixed and variable length records

INTERNAL and DISPLAY file types

QUTPUT, INPUT, UPDATE, and APPEND access modes

Program LOAD and SAVE functions

The I/0 routines supported by the disk peripheral are:

OPEN -~ Open an existing file for access. This routine must
indicate the name of the file that is to be cpened, and -
the drive identification or the diskette name (assigned.
at diskette initialization).

CLOBE — Close a file for access, The PAB can be released
and the disk peripheral software deallocates some
byffer-area in VDOP memory. Since the number of #files
that can be open simultaneously is limited, it is
advised that each file is closed as soon as it is no
longer needed.

READ — Read a logical record from the opened #ile.

WRITE ~ Write & logical record to the opened file.

RESTORE/REWIND ~ Relocate the file read/write pointer to a
given lpcation in the file. For sequential +iles this
can only be the beginning of the Ffile, whersas for
relative record files, the file read/uwrite pointer can
be relocated to any logical record in the #ile by
giving the record number.

LDAD - Load a program file into VDP amemory. The disk
peripheral will check for the correct file type before

Ti PROPRIETARY 3-1 Functional Specification

‘TI*9?14 DISK PERIPHERAL SUPPORTED FILE MANAGEMENT OPTIONS

the program is loaded (see section 4.7).

SAVE - Save a program in VDP memory onto the named disk
file. The disk peripheral does not check for legal
BASIC memory images, so this routine. like the LOAD
routine, <¢an ba used for transferring binary memory
data to and from disk files. Note that the disk file
is marked as a program Ffile however, so that files
created with a SAVE command can only be read with a
LOAD command.

DELETE — Delete the indicated #file from the given disk,
whereby the drive can be specified either by the drive
name or the disk name. DELETE #rees up the space
occupied by the file for future use.

SCRATCH RECORD - This function is not supported by the disk
peripheral.

8TATUS - Indicate current status of & file. This includes
the logical and physical EOF flags and the profection
tlag.

TI PROPRIETARY 3-2 Functional Gpecification

TI-99/4 DISK PERIPHERAL ' INTERFACE TO BASIC

SECTION 4
INTERFACE TO BASIC

This section will provide a general overview of how the disk
paeripheral presents itself to the BASIC user. For BASIC-related
details the reader is referred to the Home Computer BASIC
Language Specification.

4.1 ta ent

The BASIC OPEN statement allows the wuser to access Ffiles
stored on accessory devices, such as the disk peripheral. It
provides the link between a file-name and a BASIC +file—number.
Once the file hag been OPENed. the user can access it through the
PRINT and INPUT statements, depending upon the mode for which the
file has been OPENead.

The general form of the OPEN statement is:
OPEN #file-number: "file—-name“[,optionl,optioni, .. 331

in which "option” can be any of the OPEN options available to the
vser. The user can select the following options:

File—organization — SEGUENTIAL or RELATIVE
Open—mode — INPUT. QUTPUT, APPEND or UPDATE
Record—type - FIXED or VARIABLE

File~type - INTERNAL or DIsPLAY

File—-l1ife ~ PERMANENT

4. 1.1 File-name Specification.
in order to indicate which disk drive and which #file on that
disk drive +the wuser wants to access, he has to specify a file-
name in the OPEN statement. For the disk periphegral this file~
name can he either of two forms:
DSy, file—id
or

DEK. volname. file—id

Ti PROPRIETARY 4-1 Functional Specificatior

TI-99/4 DISK PERIPHERAL ' INTERFACE TO BASIC

in which x is a drive identification number {(1-3), “volname® is a
volume nmname identification and "file-id" is an individuval file
jdentification. Both "volname" and "file-id" can be strings of
up %0 +%en <characters long. Legal characters for these strings
are all the ABCII charactarSo except the "." character and the
ASCII space character. : '

The +#irst form of the +file-~name specification shows the
direct drive identification option, The user can specify either
DEK1, DBKZ or DSK3 as drive-numbers. Only the specified drive is
searched for the given file-—id.

The gecond +orm of the +file-name specification is the
symbolic form. The disk drive is not explicitly assigned, but is
symbolically assigned through the volume name ("volname™). All
drives are searched in sequence for the given volume name, i.e.
DSK1I first, then DBK2, then DSK3. The first drive with the given
volume name on its disk will be used for the file—id search. It
igs allowed to use two or more disks with the same volume name in
the system, however, if the specified file-id doesn’t exist on
the *First drive with the given volume name, the other disk
drive(s) with the same volume name will not be searched.

Whichever form is vsed, the given file—id has to be wunique
for the indicated disk drive, i.e. if a new file is created, the
file-id wvused must differ +from all other file~ids on that disk
drive, or the existing file will be replaced by thes new one,
ynless it ig protected.

The +ile—id indicated in the OPEN statemant has to
correspond to a data file. If the file indicated was created by
a SAVE command, an OPEN for that file will give an error., unless
the file is opened #or QUTPUT mode, in which case the program
file will be replaced by the new data file.

4, 1.2 Eile—organization Option.

The two file~organizations the user can specify are:

1. SEQUENTIAL - access the ¢#ile in sequential order,
comparable to tape-access, The file may be accessed in
any of the four I/0 modes. Record-type may be
specified as FIXED or VARIABLE. File—type may be
spacified as INTERMAL or DISPLAY.

2. RELATIVE ~ access the file in rtandom order. The open—
mode can be any of the available four modes, the
record-type must be FIXED {(which is also the defavult
value for this ¢#ile-organization), and the #ile-~type

TI PROPRIETARY - Functional Specification

TI~99/4 DISK PERIPHERAL INTERFACE TO BASIC

may be either INTERNAL or DISPLAY. Due %o BASIC
limitations, the combination RELATIVE and APPEND is not
supported. This combination is trapped out as an
eTToT.

The default file—organization is SEGUENTIAL.

Both the OSEQUENTIAL and the RELATIVE specification can
optionally he followed by an initial record allocation
specification. This specification indicates the number ot
racords to be allecated initially. In case the vecord length has
been specified as VARIABLE, +the allocation will bes made for
maximum length records.

The number of records initially allocated has to be less
than 32747, in ovrder to stay within the record addressing range
of the file management system.

The actual number of Allgcatable Units {(AUg) alloccated can
be computed by the using the following rules:

1. VARIABLE length records have an overhead of 1 byte per
record plus one byte per AU.

2. Logical records naver cross AU boundaries, 1i.8. an
integer number of logical records has to fit in an AU

A direct result of these rules is that the maximum length of
VARIABLE 1length records is limited to 254 (two lass than the AU
sizel.

initial allocation of a file is done to avoid scattering of
data-blocks over a diskette. NOTE: Initial allocation does NOT
change the End of File markers, i.e. if 100 records have been
initially allocated, the +#ile will still have its EQF set at
record O 1!

The initial allocation is only used if a file is openad for
OUTPUT mode or if a non—existing file is opened for UPDATE or
APPEND mode. 1t is ignored if a #ile is woapened for any other
case.

4.1.3 UOpen—-mode Option,

BASIC accepts four access modes:

i. INPUT - data in the file can only be Tead. The file
hag to exist before it can be read.

Tl PROPRIETARY 4--3 Functional Bpecificatior

TI-99/4 DISK PERIPHERAL INTERFACE TO BASIC

2. QUTPUT -~ data can only be written to the file, A new
file is created if the file doesn’t already exist. Is
a file of the same name already exists, the original
data in that ¥#ile will be lost, unless the file is
protected.

3. APPEND - data can only be written at the end of the
file. I+ a +¢ile of the given name doesn’'t already
exist, this mode is equivalent to OUTPUT. Due to
limitations in the tensole, this mode can only be used
for VARIABLE length records.

4. UPDATE -~ data can both be written and read. I+ the
file does not exist, it is created. Otherwise data in
an existing f#ile can be tead and/or changed and new
data can be added or old data can be deleted. UPDATE
mode is generally used for files OPENed in RELATIVE
mode, although SEQUENTIAL access is permitted.
VARIABLE length record files can be OPENed in UPDATE
mode, however., gnce a new record is written, all the
original data behind this record will be losé. This
mechanism is mainly intended for use in intermediary
files, i.e. +first the data is written out, then it is
read back without closing the data file.

Note that for UPDATE mode, it is never possible to

decrease the size of a #file. A re-wrifte will only
reset the End of File markers, without releasing the
datablocks,

The default OPEN mode is UPDATE. i.e. the file can ke both
read and written.

4.1. 4 Récarg—tggg Dptian.

The record—-type option is used to specify the size of each
record in the #file. This size can be either FIXED, 1i.e. all

records have the same length, or VARIABLE, with a given {(maximum)
length optionail. I+ the file—organization specified is RELATIVE,
the only legal record-type specification is FIXED, which is also
the default for relative record files.

Both the FIXED and the VARIABLE option can be followed by an
expression indicating the actual or the wmaximum record length
respectively. Bince this given length is used to reserve buffer-
space in the BASIC interpreter, the user is advised to choose the
record length as precisely as possible. Larger record lengths
mean fewer variables can be used by BaBSIC.

TI PROPRIETARY Ky Functional Specification

T1-99/4 DISK PERIPHERAL INTERFACE TO BaBIC

The disk peripheral defaults the recordlength for both &8
FIXED and the VARIABLE optien to 80 characters. The defau
record-type for SEGUENTIAL files is VARIABLE; for RELATIVE files
it is FIXED. : '

1# a file is apensed for any I/0 mode other than OUTPUT, and
the file already exists, the record Ilength., 1if given, has *to
match the previously stored length exactly. IF no record length
is given, the disk DSR will avtomatically default to the stoved
length.

The maximum vrecord length for FIXED length records is 255.
The maximum record length for VARIABLE length records is 254,

4.1.5 File—tups Option.

The file-type option can be used to specify the format of
the data to be stored in the file. There are two formats
available:

i. DISPLAY -~ store the data in a readable format, i.e.
like it would be printed on a printer. If the data has
to be read back by the machine, this data format is not
recommended.

2. INTERNAL ~ store the data in a machine readablas Fformat.
Since most of the datafiles on the disk will be read by’
the machine, &his data #format is recommended. It
relisves the user of the burden of storing separation
data {(like quotes and commas) in the file in order to
make it svitable for an INPUT command. It also avoids

the overhead of converting the internal machine
representation fer numbers and strings into a
representation that is readable #for humans and vice
Versa.

Again, if the file exists, and the 1/0 mode is not OQUTPUT, the
given specification has to match the value stored at file
creation. BASIC will use DISPLAY as a default, which means that
i$# data is stored in INTERNAL format, the user always has to
indicate this in the OPEN command.

4. 1.6 File-life {Option.

BASIC only vrecognizes the PERMANENT option as a file~life
specification. Since this is also the default, this
specification can be omitted completely.

Ti PROPRIETARY 4-3 Functional Specificati-n

TI-%%/4 DISK PERIPHERAL INTERFACE TO BABIC

4, 1.7 Examples.

The following axamples are meant to clarify the usage of the

OPEN statement. Please remember that whenever the given
attributes for a ¢ile don‘t match the attributes stored when the
file was created: an ervor will be given. Howaver, SEGQUENTIAL

files can be opened for RELATIVE access, and vice versa, if the
record—type specified was FIXED.

OPEN #250: "DEK1. FILEAY

This statement will open a file called "FILEA" on disk drive
#1 for access as BASIC file number 250, The specific attributes
assigned to this file ars:

File-organization - SEQUENTIAL
Open-mpde -~ UPDATE

Record~-type — VARIABLE
File—type ~ DIBPLAY

File—life - PERMANENT

The record length depends vpon the existance of the file. If the
file exists, the record length will be equal to the length used
when the file was created. I¢ the file doesn’t exist yet, the
racord length will be 80 characters.

OPEN #24:"DQK.MASTER.TAELES":INPUT.REL&TIVE;INTERNAL

Open a #ile called “TABLES" on a disk called “MASTER". The
disk drives will be searched in sequence, and the +first disk
found called “"MASTER" will be searched for a Ffile called
*TABLES", 1¢ that file exists, it will be made acctessable #for
BASIC as +file number 24. I# it doesn’t exist, an ervor will be
‘indicated. The specific attributes assigned to this file are:

File-organization ~ RELATIVE
Open—-mode - INPUT
Record~ftype ~ FIXED
File~type - INTERNAL
File~life -~ PERMANENT

The record length is equal to the stared length +for the file
“TABLES".

OPEN #1: "DSK3. TESTDATA", CUTPUT, FIXED 40, INTERNAL, RELATIVE
Create a random access file called "TESTDATA" on drive #3.
I# the file already exists. overwrite it with the new data (the

file—-name has to be unique). The attributes created for this file
are;

TI PROPRIETARY 4 Functional Specification

TI-99/4 DISK PERIPHERAL INTERFACE TO BAEBIC

File—organization — RELATIVE
Open—mode — OUTPUT

Record-type - FIXED, 40 characters
File—-type — INTERNAL

File~life — PERMANENT

OPEN #1: "DSK1. *, INTERNAL, FIXED 38, INPUT

This command will open the CATALOG +Ffile for SEGQUENTIAL
input. For more information refer to section 5.

4,2 {I8E Statemant

The CLOSE statement closes the association between fthe BASIC
file-number and the #file. After the CLOSE statement is
performed, BASIC can no longer access that specific file, wunless
it is OPENed again.

The general form of the CLOBE statement is:
CLOSE #¢ile-numberl:DELETE]
The keyword DELETE is optional with the CLOSE statement. In case
DELETE is specified, the file is not only disconnected from the
file-number, but the disk space taken up by the file is released,.
and the file-id is erased from the disk’s catalog. This means
that the +file c¢an no longer be accessed, not even with an OPEN
statement (see DELETE statement).

A few examples of CLOSE statements are:

CLOSE #240 Close the file associated with #240.

CLOSE #240: DELETE Same as above. but also delete the file.

4.3 PRINT Statement

The PRINT statement can be used to write information out to
a #File that has been previocusly UPENed. The PRINT statement can
only be used for files that have been OPENed for access in either
OUTPUT, UPDATE or APPEND mode. A PRINT to & VARIABLE record
length #ile will always set & new End of File mark, cavsing data
behind the current tecord to be lost.

T1 PROPRIETARY 47 Functional Specificatior

TI-99/4 DISK PERIPHERAL INTERFACE TO BABIC

The general form of the PRINT statement is:
PRINT #file-number[, REC record-numberll:print-listl]

For a detailed description of the PRINT statement, the wuser
is referred to the 99/4 BABIC Language User’s Reference Guide.

4. 4 NPUT Stat

The INPUT statement can be used to read information #rom a
previously created and OPENed file. The INPUT statement can only
be used for files that have been OPEMNed #for access in either
INPUT ar UPDATE mode.

The general form of the INPUT statement is:
INPUT #file—numberl.,REC record~numberl]:variable~list

A more detailed description of the INPUT statement can be
found in the 99/4 BASIC Language User’s Reference Guide.

4.5 BRESTORE Statement

The RESTORE statement repositions an open file to its #first
record, or at a specific record if the file is OPENed for
RELATIVE mode and the RESTORE contains a REC clause.

The general form of the RESTORE statement is:
RESTDRE #file—number(,REC recovrd-numberl

Generally RESTORE is used to reposition a file for & second
read of the same data. However, using the REC clause: the user
may position £fhe current access pointer anywhere within or
without the +$ile, if the #ile is UOPENed for RELATIVE mode. In
this case a file may also be sequentially read, starting at a
random peint within the #ile.

1¢# the file is OPENed for OUTPUT or APPEND mode, the REBTORE
statement will not be performed and an error will be given.

T1 PROPRIETARY L Functional Bpecification

TI~99/4 DISK PERIPHERAL INTERFACE TO BASIC

4.4 DELETE Statement

The DELETE statement may be used to remove files that are ns
longer needed from a disk. This will #ree up the space allocated
for the file.

- The general form of fthe DELETE statement is:
DELETE "#ile~name"

The DELETE statement is a statement for which no previous
OPEN is required. Therefore it is possible to DELETE a +file
which is still OPEN +for access. If this happens, any future
reference to that file, including a CLOSE, will give an error
indication. An example of the described sequence may be:

100 QPEN #2: "DSKLi. FILE"Y, OUTPUT
110 PRINT #2: "HELLO"

120 DELETE “DSK1.FILE"®

130 CLOBE #2

In +this case line 130 will give an error, since the file
"DEU1.FILE" will no longer exist at that point in the program.

_ 4.7 QLD Command

The OLD command allows for retrieval of previously stored
programs from a peripheral like a disk. The program must have
been stored with the SAVE command, since the disk softwarewill
not allow for the loading of data files with the OLD command.

The general form of the OLD command is:

M.D file-name

Since OLD is a system command that cannot be used in a
program, the file-name can be an wunquoted string, i, e. the
command
LD DBKi. PROGRAM

is perfectiy legal.

TI PRUOPRIETARY e Functional Specificati-=

TI-99/4 DISK PERIPHERAL | . INTERFACE TO BASIC

4.8 GSAVE Command

The SAVE command can be used to save the current program in
the 99/4 onto a disk #ile, which can then be reloaded with the
OLD command.

The general form of the SAVE command is:
SAVE file—name

Like OLD, SAVE is a system command, allowing the user to
type the file-name without quotes.

SAVE will automatically create a new file, averwriting any
existing ¢file of the same name: wunless ¢this #file has been
protected.

4.9 EQOF Function

The EOF function can be used to test for end of file during
1/0 wuoperations. Three file conditions are indicated by the EOF
routine:

C Not EOF (End of File)
i Logical EOF (End of File)
-1 Physical EOM (End of Medium)

Physical EOM can only be detected if the device is at its
physical end and the file is at its logical end,

The general form of the EOF function is:
EgF(f#ile—-number)

The EOF indicatiaon only has meaning in the case of
segquential access to files, since for random access the next
record to be read or written cannot be determined from the
current ane. Therefore, the EOF subroutine will assume that ¢the
next record to be read/written is the sequentially next recovrd.

The ingical EOF indicates that the naxt segquential
road/write cperation will asttempt to access 8 record sutside fThe
currant file. In general this indication will only be used for
read operations, since for write operations & logical EOF will be
indicated a2 scon as records are appended at the end of the
existing +ile.

Ti PROPRIETARY 4—-10 Functional Bpecification

T1-99/4 DISK PERIPHERAL INTERFACE TO BASIC

Because of pending BASIC INPUT conditions, it is possible =

that the EOF subroutine indicates "EOF", even if the next INPUT
statement will yield no EQF error. since it can read data from
the current record. Bomething similar <can happen if EOF
indicates *“no EDF" and the next INPUT statement reads more than
one record. In this case the INPUT might be terminated with an
error. To avoid this type of situation, the user is advised to
vse only non-pending INPUT statements, i.e. INPUT statements
without a trailing comma, and to know what type of data has been
stored in the records, so that each record corresponds to one
INPUT statement.

For random access to files, the EUF subroutine can only give
meaningful results if the access 1is converted ¢to “semi-
sequential® access, i.e. i# the record pointer is positioned
through a RESTORE statement and then sequentially accessed
through any 1I/0 statement without REC clavse specification.
Aftar the RESTORE the EOF subroutine will indicate what the
condition for the next vaecord is (EOF, EOM or available), without
issuing an I/0 error. '

Note that there is one EOM condition that cannot be detected
by the EOF subroutine. This condition occurs when the data
blocks on a disk become so scattered that not emough data blocks
can be allocated for a file. In this case a PRINT operation will
be aborted with an I/0 ERROR, even though there is enough space
available an the disk, and the EDF function does nof indicate ar
EOM-condition. . ;

T PROPRIETARY 4

i1 Functional Specificatior

TI-99/4 DISK PERIPHERAL ‘ CATALDOG FILE ACCESS FROM BASIC

SECTION 5
CATALDG FILE ACCESS FROM BASBIC

The BASIC vser can access a disk catalog like a read-only
disk file. This disk-~#ile has no name and is o# the INTERNAL.
FIXED length type. An example of a CATALOG file OPEN is:

OPEN #1:"DSK1. *, INPUT, INTERNAL, RELATIVE

Since BASIC will automatically default the record length to
the correct wvalue, it is recommended that the user does not
specify this length. I#, for whatever rTeason. the user does want
to specify this length, it has to be specified as 38 Every
other record leangth will result in an error,

The CATALOG +$ile acts like it is protected, i.e. it will
enly allow INPUT access. An attempt to open the CATALOG file for
any other mode will result in an ervor.

The data in the CATALDG #ile is written in the standard
BASIC INTERNAL format. Every record in the #file contains four
items: ane string and three numerics. There are exactly 128
records in the CATALDG ¢#ile, numbered from O to 127,

Record number O contains information about the volume on
which the CATALDG file is located. The string indicates the name
of the disk, containing up to 10 characters. The numerical items
indicate the following:

1. Record-type ~ always O for this record.

2. Total number of Alls on the digsk ~— for a standard 40—
track diskette this should be 358,

3. Total number of #ree AlUs gn the disk.

Record numbers 1 through 127 contain information about the
covrresponding #ile in the CATALOG. Nen-existing files will give
a null-string as #first items and Os for the remaining three
items. Existing #iles will indicate the file-name in the string
item: and the following in the numeric items:

TI PRUOPRIETARY

o
i
[

Functional Specification

TI-99/4 DISK PERIPHERAL CATALOG FILE ACCESS FROM BASIC

ST File—type ~ negative if file is protected.
DISPLAY/FIXED datatile
DISPLAY/VARIABLE datafile
INTERNAL./FIXED datafile
INTERNAL/VARIABLE datafile

Memory image file (e.g. BASIC program)

b LA

Number of AUs allocated by the file.
Nuymber of bytes per record.

A type 5 file {(memory image) will always indicate a zero in its
third item since the number of bytes per vrecord has no meaning.

Ti PROPRIETARY 52 Functicnal Specificati

TI-59/4 DISK PERIPHERAL FILE PROTECTION

SECTION &
FILE PROTECTION

A user may select to protect or unprotect any of the +files
on a disk. This can he done with the Disk Manager Package.

The effect of a protected #file 1is that the system
automatically disallows any type of (potentially) destructive
access to that specific #ile, i.e. the following actions are
disabled:

SAVE to 2 protected file.

OPEN a protected #ile for an access mode othar than INPUT.

Note however that software file protection does not of#er
any protection against complete disk re-initialization. The only
way to0 avoid +file loss in that specific case is to “write
protect® the disk itsel# by placing a wrife protect tab over the
notch on the right side of the disk. This will disallow any
write operation to the disk, giving a hard error as soon as the
disk is being accessed for write operations. Notice that this
kind of write protection is only intercepted on the asctual write
operations, i.e. the disk software will not disallow potentially
dastructive access to the disk up to the moment that it actuvally
tries to madify part of the disk.

Ti PROPRIETARY &1 Functional GBpecification

TI-99/4 DISK PERIPHERAL FfLES SUBPROGRAM

SECTION 7
FILES SUBFROGRAM

The default number of files that can be open simultaneously
is 3. To modif#y this number, the FILES subprogram has been
provided. The syntax for this subprogram is:

CALL FILES(x)
NEW

where "x" is a number from 1 to 9, indicating the number of files
that can be opened simultaneously. Arithmetic expressions and
variable names are not allowed in the FILES subprograam.

The NEW command #following the FILES +tall has to be
considered a part of the FILEB call, since FILES will destroy
some pointers wused by the BASIC interpreter. The user is urged
to issue a NEW command after each call to the FILES subprogram.

WARNING

The usage of the FILEB subprogram in a BASIC
pragram is not allowed., and doing so will
cause ynpredictable and vsually highly
undesirtable rasults. Likewise a c¢all ¢to
FILEE without a NEW command immediately
following it may cause unpredictable results,
ranging from loss of program to loss of data
in digkettes. The only way to avoid this is
to use the FILES subprogram only in the above
defined manner.

The FILES subprogram will check only for the above defined
syntax. Any characters following the call are ignored, i.e. the
call
CALL FILES{2)=s2
igs perfectly legal. and will be executed the came as

CALL FILES(2)

T PROPRIETARY 7-1 Functional Specificatior

T1-99/4 DISK PERIPHERAL FILEE SUBPROGRAM

The disk has a standard overhead buffer allocation of 534
bytes. Each potentially open file will add S5iB bytes to this
byffer area allocated for the disk. I+ the current allocation
would leave the user with a buffer of less than 2K bytes, as may
cccur in a 4K system, the FILES subprogram will return with an
INCORRECT STATEMENT evror. :

In case a syntax error is detected before the right
parenthesis (")"}, an INCORRECT STATEMENT error will he

indicated.

T1 PRUPRIETARY 72 Functional Specification

- YI-99/4 DISK PERIPHERAL I/0 ERROR CODES

SECTION 8
1/0 ERROR CODES

1/8 srrors detected by the disk peripheral software are
always indicated by BABIC in the following format:

1/0 ERROR xy CIN 1113

The digits ‘"xy* indicate the type of errvor that has
occyrred, The first digit (x) indicates the I/0 routine in which
the error occurred. The folliowing I/0 routine codes can be
given:

error in OPEN routine

error in CLOSE routine

error in READ routine

error in WRITE routine

error in RESTORE routine

ervor in LOAD routine (used during OLD}
error in SAVE routine

error in DELEYE routine

error in S8TATUS routine (used in EUOF)

MNP ARGU-O

The second digit (y} indicates the type of I/0 error that
has occurred. There are 8 different codes with the following
meaning:

o BAD DEVICE NAME -~ the specified device could not be
found. :

i DEVICE WRITE PROTECTED - unprotect the disk and try
again

2 BAD OPEN ATTRIBUTE - one or more OPEN oaptions were
illegal or didn’t match the file characteristics.

3 ILLEGAL OPERATION -~ ghould not be generated by BagIC
for the disk gperipheral. Indicates wusage of non-
existing I/0 code.

4 OUT OF SPACE -~ a physical end of file was reached, i.e.
there was insufficient space on the disk £o complete
the requested operation.

5 ATTEMPT TO READ PAST ECOF

TI PROPRIETARY 81 Functional Specificati: -~

TI~-9%/4 DISK PERIPHERAL - I/0 ERROR CODES

¢ & DEVICE ERROR ~ a hard or soft device error was
Tl detected. This may occur if the disk was not
initialized or was damaged, the system was powered down
during disk writes, the given unit didn’¢ respond, etfc.

7 FILE ERROR -~ the indicated +file or wvolume doesn‘t

exist; the file &ype doesn’t match agcess mode {(program
file versus data file).

TI PROPRIETARY 8-~2 Functional Specification

	Functional Specification for the 99_4 Disk Peripheral V3.0 03-28-1983 Odd.pdf
	Functional Specification for the 99_4 Disk Peripheral V3.0 03-28-1983 Even.pdf

